所有产品

博马娱乐放弃深度学习?我承认是因为线性代数

  :作为机器学习的一个子域,关注用于模仿大脑功能和结构的算法:人工神经网络。

  线性代数:连续的而不是离散的数学形式,许多计算机科学家不太了解它。对于理解和使用许多机器学习算法,特别是深度学习算法,理解线性代数是非常重要的。

  线性代数,概率和微积分是机器学习用于表述的「语言」。学习这些主题将有助于深入理解底层算法机制,便于开发新算法。

  当限定在更小的层次时,深度学习背后的基础都是数学。所以在开始深度学习和编程之前,博马娱乐!理解基本的线性代数是至关重要的。

  深度学习背后的核心数据结构是标量,向量,矩阵和张量。让我们以编程方式用这些解决所有基本的线性代数问题。

  深度学习有不同的有趣的数字集合。ℕ 表示正整数集合(1,2,3,...)。ℤ 表示实数,包括正值,负值和 0。ℚ 表示有理数的集合,有理数可以表示为两个整数组成的分数。

  向量是一维有序数组,是一阶张量的例子。向量被称为向量空间的对象的片段。向量空间可以被认为是特定长度(或维度)的所有可能向量的全部集合。三维实值向量空间(用 ℝ^3表示)通常用于从数学角度表示我们对三维空间的现实世界概念。

  为了明确识别向量的必要成分,向量的第 i 个标量元素被写为 x [i]。

  在深度学习中,向量通常表示特征向量,其原始组成部分定义特定特征的相关性。这些元素中可能包括二维图像中像素集强度的相关重要性或者金融工具的横截面的历史价格值。

  矩阵是由数字组成的矩形阵列,是二阶张量的一个例子。如果 m 和 n 均为正整数,即 m, n ∈ ℕ,则矩阵包含 m 行 n 列,共 m*n 个数字。

  在 Python 语言中,我们使用 numpy 库来帮助我们创建 n 维数组。这些数组基本上都是矩阵,我们使用矩阵方法通过列表,来定义一个矩阵。

  矩阵可以与标量、向量和其他的矩阵相加。这些运算都有严格的定义。这些技巧在机器学习和深度学习中会经常用到,所以值得熟练运用这些技巧。

  这类方法返回矩阵的形状,并将两个参数相加后返回这些矩阵的总和。如果这些矩阵的形状不相同,则程序会报错,无法相加。

  张量的更一般的实体封装了标量、向量和矩阵。在物理学科和机器学习中有时需要用到高于二阶的张量。