所有产品

1、设A是4阶矩阵特征值为12-23求det(A^3-2A^2A-3E) 2、

  方法是: 由属于特征值2的2个线性无关的特征向量与 -1 的特征向量正交, 得出特征值2的2个特征向量, 将其正交化,单位化, 与-1的那个特征向量一起, 就构成了正交矩阵Q.

  展开全部既然A有4个不同特征值,那么A相似于对角形J,对角元素为特征值,用J代入1中的式子求行列式就可以了