所有产品

博马娱乐矩阵特征值的个数等于其阶数吗?

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  矩阵特征值的个数等于其阶数。如果存在一个n阶矩阵,那么它的的特征值有n个,其中包括复数根与重根。并且一个n阶实对称矩阵一定有n个实特征值(包括重根)。

  比如2阶特征值有2个,3阶特征值有3个……n阶特征值有n个。但可能存在重根,也可能是复根,比如3阶矩阵的特征值可能为-1,-1,5。博马娱乐

  若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值。λ的个数等于矩阵的阶数。

  注意:如果只考虑实特征根,这个结论不一定成立,有些矩阵可能没有实特征根。

  1、Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。

  2、mE-A=0,求得的m值即为A的特征值。mE-A 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。

  4、如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。

  n阶矩阵在复数范围内,一定有n个特征值(重特征值按重数计算个数),从这个意义上说,矩阵的特征值个数与矩阵的阶数倒是有关系的。n阶矩阵在实数范围内有多少个特征值就不一定了。

  但是有一个重要的结论需要知道:n阶实对称矩阵一定有n个实特征值(重特征值按重数计算个数)

  在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。

  这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用示线性方程组,得到了其增广矩阵。

  在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。